Solutions to chapter 27's exercises

Solution to exercise 27.1 (p. 404): One answer, given in the text on page 404, is that the single neuron function was encountered under 'the best detection of pulses'. The same function has also appeared in the chapter on variational methods when we derived mean field theory for a spin system. Several of the solutions to the inference problems in chapter 1 were also written in terms of this function.

Solution to exercise 27.2 (p. 406): ...

Solution to exercise 27.3 (p. 412): ...

Solution to exercise 27.4 (p. 412): ...

Solution to exercise 27.5 (p. 412): Useful stuff: let \(x \) and \(s \) be binary \(\in \{ \pm 1 \}^7 \).

The likelihood is \((1-f)^s f^M\), where \(N = (s' x + 1)/2 \) and \(M = (1 - s' x)/2 \).

The LED displays a binary code of length 7 with 10 codewords. Some codewords are very confusable — 8 and 9 differ by just one bit, for example. A superior binary code of length 7 is the \((7,4)\) Hamming code. This code has 15 non-zero codewords, all separated by a distance of at least 3 bits.

Here are those 15 codewords, along with a suggested mapping to the integers 0–14.

<table>
<thead>
<tr>
<th>(n)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x)</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
</tr>
</tbody>
</table>

Problems to look at before chapter 28

Exercise 27.6: What is \(\sum_{k=0}^{N} \binom{N}{k} \)?

Exercise 27.7: If the top row of Pascal's triangle (which contains the single number '1') is denoted row zero, what is the sum of all the numbers in the triangle above row \(N \)?

Exercise 27.8: 3 points are selected at random on the surface of a sphere. What is the probability that all of them lie on a single hemisphere?

General position

Definition 27.1 A set of points \(\{ x_k \} \) in \(K \)-dimensional space are in general position if any subset of size \(\leq K \) is linearly independent.

In \(K = 3 \) dimensions, for example, a set of points are in general position if no three points are collinear and no four points are coplanar.

Exercise 27.9: Can a finite set of \(2N \) distinct points in a two-dimensional space be split in half by a straight line

- if the points are in general position?
- if the points are not in general position?

Can \(2N \) points in a \(K \) dimensional space be split in half by a \(K-1 \) dimensional hyperplane?
28.2 The capacity of a single neuron

We will look at the simplest case, that of a single binary threshold neuron. We will find that the capacity of such a neuron is two bits per connection. A neuron with K inputs can store 2^K bits of information.

To obtain this result we will need to lay down some rules to exclude less interesting answers, such as: "the capacity of a neuron is infinite, because each of its weights is a real number and so can convey an infinite number of bits". We exclude this answer by saying that the receiver is not able to examine the weights directly, nor is the receiver allowed to probe the weights by observing the output of the neuron for arbitrarily chosen inputs. We will constrain the receiver to observe the output of the neuron at the same fixed set of N points $\{x_i\}$ that were in the training set. What matters now is how many different distinguishable functions our neuron can produce, given that we can only observe the function at these N points. How many different binary labellings of N points can a linear threshold function produce? And how does this number compare with the maximum possible number of binary labellings, 2^N? If nearly all of the 2^N labellings can be realised by our neuron, then it is a communication channel that can convey all N bits (the target values $\{t_i\}$) with small probability of error. We will identify the capacity of the neuron as the maximum value that N can have such that the probability of error is very small.

We thus examine the following scenario. The sender is given a neuron with K inputs and a data set D_N which is a labelling of N points in general position. The sender uses an adaptive algorithm to try to find a w that can reproduce this labelling exactly. For this analysis, we will assume that they have a perfect algorithm, that finds such a w if it exists. Otherwise, w is set to some other value. The receiver then evaluates the threshold function on the N input values. What is the probability that all N bits are correctly reproduced? How large can N become, for a given K, without this probability becoming substantially less than one?

General position

One technical detail needs to be pinned down: what set of inputs $\{x_n\}$ are we considering? Our answer might depend on this choice. We will assume that the points are in general position, which means in $K = 3$ dimensions, for example, that no three points are colinear and no four points are coplanar.

Definition 28.1 A set of points $\{x_n\}$ in K-dimensional space are in general position if any subset of size $\leq K$ is linearly independent.

The linear threshold function

The neuron we will consider performs the function

$$y = f \left(\sum_{k=1}^{K} w_k x_k \right). \tag{28.1}$$
Chapter 28 — Capacity of a single neuron

where

\[f(a) = \begin{cases}
1 & a > 0 \\
0 & a \leq 0
\end{cases} \]

(28.2)

We will not have a bias \(w_0 \); the capacity for a neuron with a bias can be obtained by replacing \(K \) by \(K + 1 \) in the final result below, i.e., considering one of the inputs to be fixed to 1. (This is not incompatible with the assumption that the points are in general position.)

28.3 Counting threshold functions

Let us denote by \(T(N, K) \) the number of distinct threshold functions on \(N \) points in general position in \(K \) dimensions. We will derive a formula for \(T(N, K) \).

To start with, let us work out a few cases by hand.

In \(K = 1 \) dimension, for any \(N \)

The \(N \) points lie on a line. By changing the sign of the one weight \(w \) we can label all points on the right side of the origin 1 and the others 0, or vice versa. Thus there are two distinct threshold functions, \(T(N, 1) = 2 \).

With \(N = 1 \) point, for any \(K \)

If there is just one point \(\mathbf{x}^{(1)} \) then we can realise both possible labelings by setting \(\mathbf{w} = \pm \mathbf{x}^{(1)} \). Thus \(T(1, K) = 2 \).

In \(K = 2 \) dimensions

In two dimensions with \(N \) points, we are free to spin the separating plane around the origin. Each time the plane passes over a point we obtain a new function.

Once we have spun the plane through \(2\pi \) radians we reproduce the function we started from. Because the points are in general position, the separating plane crosses only one point at a time. In one revolution, every point is passed over twice. There are therefore \(2N \) distinct threshold functions, \(T(N, 2) = 2N \).

Comparing with the total number of binary functions, \(2^N \), we may note that for \(N \geq 3 \), not all binary functions can be realised by a linear threshold function. One famous example of an unrealisable function with \(N = 4 \) and \(K = 2 \) is the exclusive-or function on the points \(\mathbf{x} = (\pm 1, \pm 1) \).\(^2\)

In \(K = 2 \) dimensions, from the point of view of weight space

There is another way of visualizing this problem. Instead of visualizing a plane separating points in the two-dimensional input space, we can consider

\(^2\)This derivation is originally due to Cover (1965) and the exposition that follows is due to Yaser Abu-Mostafa. Another explanation of this material can be found in Hertz et al. (1991), page 111.

\(^2\)These points are not in general position, but you may confirm that the function remains unrealisable if the points are perturbed into general position.
the two-dimensional weight space and count the number of threshold functions by counting how many distinguishable regions there are in it. We can colour regions in weight space different colours if they label the given points differently. Consider weight space and consider the set of weight vectors that classify a particular example \(x^{(a)} \) as a 1. For example, figure 28.2(a) shows a single point in our two-dimensional \(x \)-space, and figure 28.2(b) shows the two corresponding sets of points in \(w \)-space. One set of weight vectors occupy the half space
\[
x^{(n)} \cdot w > 0,
\]
and the others occupy \(x^{(n)} \cdot w < 0 \). In figure 28.3(a) we have added a second point in the input space. There are now 4 possible labellings: \((1, 1), (1, 0), (0, 1)\) and \((0, 0)\). Figure 28.3(b) shows the two hyperplanes \(x^{(1)} \cdot w = 0 \) and \(x^{(2)} \cdot w = 0 \) which separate the sets of weight vectors that produce each of these labellings. When \(N = 3 \) (figure 28.4), weight space is divided by three hyperplanes into six regions. Not all of the eight possible labellings can be realised. Thus \(T(3, 2) = 6 \).

In \(K = 3 \) dimensions

We now use this weight space visualization to study the three-dimensional case.

Let us imagine adding one point at a time and count the number of threshold functions as we do so. When \(n = 2 \), weight space is divided by two hyperplanes \(x^{(1)} \cdot w = 0 \) and \(x^{(2)} \cdot w = 0 \) into four regions in any one region all vectors \(w \) produce the same function on the 2 input vectors. Thus \(T(2, 3) = 4 \).

Adding a third point in general position produces a third plane in \(w \)-space, so that there are 8 distinguishable regions. \(T(3, 3) = 8 \). The three bisecting planes are shown in figure 28.5a.

At this point matters become slightly more tricky. The fourth plane in the three-dimensional \(w \)-space cannot intersect all eight of the sets created by the first three planes. A sketch confirms that for points in general position six of the existing regions are cut into two and the remaining two are unaffected (figure 28.5b). So \(T(4, 3) = 14 \). Thus two of the binary functions on 4 points in 3 dimensions cannot be realised by a linear threshold function.

\[\begin{array}{c|cccccccc}
N & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline
1 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 \\
2 & 2 & 2 & 4 & 4 & & & & \\
3 & 2 & 6 & 8 & & & & & \\
4 & 2 & 8 & 14 & & & & & \\
5 & 2 & 10 & & & & & & \\
6 & 2 & 12 & & & & & & \\
\end{array}\]

Table 28.1. Values of \(T(n, n) \) deduced by hand

\[\begin{array}{c|cccccccc}
N & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline
0 & 1 & & & & & & & \\
1 & 1 & 1 & & & & & & \\
2 & 1 & 2 & 1 & & & & & \\
3 & 1 & 3 & 3 & 1 & & & & \\
4 & 1 & 4 & 6 & 4 & 1 & & & \\
5 & 1 & 5 & 10 & 10 & 5 & 1 & & \\
\end{array}\]

Table 28.2. Pascal's triangle

Figure 28.6. Illustration cutting process going from \(T(4, 3) \) to \(T(4, 3) \). (a) The eight of figure 28.5a with one hyperplane. All of the regions that are not coloured white have been cut into two. (b) The hollow cube has been cut into two by the fourth plane. (c) This figure shows the new two dimensional hyperplane which is divided into six by the three one-dimensional hyperplanes (lines) which cut into two the existing regions. Each of these regions contains one of the three-dimensional regions in figure 28.6a which have been cut into two by this new hyperplane. This shows \(T(4, 3) - T(3, 3) = 6 \). For \(T(4, 3) \) should be compared with \(T(4, 3) \).
We have now filled in the values of \(T(N, K) \) shown in table 28.1. Can we obtain any insights into our derivation of \(T(4, 3) \) in order to fill in the rest of the table for \(T(N, K) \)? Why was \(T(4, 3) \) greater than \(T(3, 3) \) by six?

Six is the number of regions that the new hyperplane bisects in \(\mathbb{W}^9 \) space (figure 28.4a). Equivalently, if we look in the \(K-1 \) dimensional subspace that is the \(N \)th hyperplane, that subspace is divided up into six regions by the \(N-1 \) previous hyperplanes (figure 28.6c). Now this is a concept we have met before. Compare figure 28.6c with figure 28.4b. How many regions are created by \(N-1 \) hyperplanes in a \(K-1 \) dimensional space? Why, \(T(N-1, K-1) \), of course! In the present case \(N = 4, K = 3 \), we can look up \(T(3, 2) = 6 \) in the previous section.

\[
T(4, 3) = T(3, 2) + T(3, 2).
\]

(28.4)

Recurrence relation for any \(N, K \)

Generalizing this picture, we see that when we add an \(N \)th hyperplane in \(K \) dimensions, it will bisect \(T(N-1, K-1) \) of the \(T(N-1, K) \) regions that were created by the previous \(N-1 \) hyperplanes. This means we can write down \(T(N, K) \) in terms of \(T(N-1, K-1) \) and \(T(N-1, K) \):

\[
T(N, K) = T(N-1, K-1) + T(N-1, K-1).
\]

(28.5)

Now all that remains is to solve this recurrence relation given the boundary conditions \(T(N, 1) = 2 \) and \(T(1, K) = 2 \).

Does the recurrence relation (28.5) look familiar? Maybe you remember building Pascal's triangle by adding together two adjacent numbers in one row to get the number below. The \(N, K \) element of Pascal's triangle is equal to

\[
\binom{N}{K} = \frac{N!}{(N-K)!K!},
\]

(28.6)

So combinations \(\binom{N}{K} \) satisfy the equation

\[
C(N, K) = C(N-1, K-1) + C(N-1, K), \quad \text{for all } N > 0.
\]

(28.7)

Here we are adopting the convention that \(\binom{N}{K} = 0 \) if \(K > N \) or \(K < 0 \). So \(\binom{N}{K} \) satisfies the required recurrence relation (28.5). This doesn't mean \(T(N, K) = \binom{N}{K} \), since there can be many functions that satisfy one recurrence relation. But perhaps we can express \(T(N, K) \) as a linear superposition of combination functions of the form \(C_{n_1, n_2}(N, K) \equiv \binom{N+n_1+n_2}{n_1+n_2} \). By comparing tables 28.2 and 28.1 we can see how to satisfy the boundary conditions: we simply need to translate Pascal's triangle to the right by 1, 2, 3, \ldots superpose; add multiply by two and drop the whole table by one line. Thus:

\[
T(N, K) = 2 \sum_{k=0}^{K-1} \binom{N-1}{k}.
\]

(28.8)

Using the fact that the \(N \)th row of Pascal's triangle sums to \(2^N \), that is, \(\sum_{k=0}^{N} \binom{N}{k} = 2^N \), we can simplify the cases where \(K+1 \geq N-1 \).

\[
T(N, K) = \begin{cases}
2^N & K = N \\
2 \sum_{k=0}^{K-1} \binom{N-1}{k} & K < N
\end{cases}
\]

(28.9)

Interpretation

It is natural to compare \(T(N, K) \) with the total number of binary functions on \(N \) points, \(2^N \). The ratio \(T(N, K)/2^N \) tells us the probability that an arbitrary labelling \(\{a_i\}_{i=1}^N \) can be memorized by our neuron. The two functions are equal for all \(N \leq K \). The line \(N = K \) is thus a special line, namely, it defines the maximum number of points on which any arbitrary labelling can be realised. This number of points is referred to as the Vagin–Chernomysky dimension (VC dimension) of the class of functions. The VC dimension of a binary threshold function on \(K \) dimensions is thus \(K \).

What is interesting is (for large \(K \)) the number of points \(N \) such that \(\text{almost any labelling can be realised}. \) The ratio \(T(N, K)/2^N \) is, for \(N < 2K \), still greater than \(1/2 \), and for large \(K \) the ratio is less than \(1 \) by an exponentially small quantity.

For our purposes the familiar sum in equation (28.9) is well approximated
Chapter 28 — Capacity of a single neuron

by the error function,

\[\sum_{k} \binom{N}{k} \approx 2^N \Phi \left(\frac{K - (N/2)}{\sqrt{N/2}} \right), \quad (28.10) \]

where \(\Phi(z) = \int_{-\infty}^{z} \exp(-x^2/2) \sqrt{2\pi} dx \). Figure 28.7 shows the fraction \(T(N, K)/2^N \) as a function of \(N \) and \(K \). The take-home message is shown in figure 28.7(c): although the fraction \(T(N, K)/2^N \) is less than 1 for \(N > K \), it is only negligibly less than 1 up to \(N = 2K \); there, there is a catastrophic drop to zero, so that for \(N > 2K \), only a tiny fraction of the binary labelings can be realized by the threshold function.

Conclusion

The capacity of a linear threshold neuron, for large \(K \), is 2 bits per connection.

A single neuron can almost certainly memorize up to \(N = 2K \) random binary labels, but will almost certainly fail to memorize more.

28.4 Problems

Exercise 28.1:42 Four points are selected at random on the surface of a sphere.
What is the probability that all of them lie on a single hemisphere?
How does this question relate to \(T(N, K) \)?

Exercise 28.2:42 Consider the binary threshold neuron in \(K = 3 \) dimensions, and the set of points \(\{x\} = \{(1,0,0), (0,1,0), (0,0,1), (1,1,1)\} \). Find a parameter vector \(w \) such that the neuron memorizes the labels: (a) \(\{t\} = \{1,1,1\} \); (b) \(\{t\} = \{1,1,0,0\} \).
Find an unrealizable labeling \(\{t\} \).

Exercise 28.3:42 Estimate in bits the total sensory experience that you have had in your life — visual information, auditory information, etc. Estimate how much information you have memorized. Estimate the information content of the works of Shakespeare. Compare these with the capacity of your brain assuming you have \(10^{11} \) neurons each making 1000 synaptic connections, and that the capacity result for one neuron (two bits per connection) applies. Is your brain full yet?